GHB (Gamma-Hydroxybutyrate)

GHB, a now illegal compound once sold in health food stores, was discovered in 1963 as a naturally occurring substance in the human brain (Nature 1963;200:1207-1208). Researchers have suggested that it acts as a neurotransmitter, but the mechanism of action producing the clinical effects is unknown. In the 1970s, GHB was used to treat sleep disorders, and some interest in this use continues. Some doctors feel it is the most reliable medication for inducing sleep that exists. It is thought to induce rapid eye movement sleep, decreasing symptoms of narcolepsy. Many prominent doctors have been outspoken about the unnecessary legal restrictions placed on this naturally occurring substance.

For a summary of the history and actions of GHB please visit our GHB Summary page.

Gamma-hydroxybutyrate Withdrawal Syndrome

A withdrawal syndrome following extreme chronic use of gamma-hydroxybutyrate (GHB) has been described in isolated case reports. All patients had been ingesting GHB frequently (every 1-3 hours) around the clock, for a period from 2 months to 3 years. Withdrawal symptoms began soon after cessation of GHB and lasted for 5-15 days. Early symptoms were mild (insomnia, tremors, nausea, vomiting, confusion) but progressed over several days to autonomic instability (tachycardia and hypertension), visual and auditory hallucinations, and delirium.


GHB (Gamma-Hydroxybutyrate) can help with the following


Alcoholism Recovery

See the link between Alcoholism and GHB.


Alcohol-related Problems

GHB shows great promise in the treatment of alcoholism. In Europe, one of its primary uses is to relieve withdrawal symptoms, cravings, and anxiety among alcoholics.

In laboratory rats addicted to alcohol, withdrawal symptoms closely resemble those exhibited by humans, including tremors, convulsions, and hypersensitivity to sound. All of these symptoms were blocked by sufficiently high doses of GHB (Fadda, 1989). Administration of GHB has also been found to prevent alcohol consumption among rats that voluntarily ingest alcohol (Fadda, 1989; Gallimberti, 1989).

In a rigorous, double-blind, placebo-controlled study conducted of human alcoholics, “nearly all withdrawal symptoms disappeared within 2-7 hours” after administration of GHB. On a severe-moderate-mild-or-none scale, withdrawal symptoms remained below moderate during the entire period. The only side effect observed was slight, occasional, and transient dizziness. The researchers concluded, “the results clearly indicated that GHB is effective for the suppression of withdrawal symptoms in alcoholics” (Gallimberti, 1989).




GHB should be avoided in cases of severe hypertension.


Low HGH (Human Growth Hormone)

GHB stimulates pituitary growth hormone (GH) release. One methodologically rigorous Japanese study reported nine-fold and sixteen-fold increases in growth hormone 30 and 60 minutes respectively after intravenous administration of 2.5gm of GHB in 6 healthy men between the ages 25-40 [Takahara, 1977]. GH levels were still seven-fold higher at 120 minutes.

The mechanism by which GHB stimulates growth-hormone release is not known. Dopamine activity in the hypothalamus is known to stimulate pituitary release of growth hormone, but GHB inhibits dopamine release at the same time that it stimulates GH release. This suggests that GHB’s GH-releasing effect takes place through an entirely different mechanism.

The Immune System  

Chronic Fatigue / Fibromyalgia Syndrome

GHB, as expected, has been reported to help decrease pain and improve sleep in fibromyalgia patients.

Lab Values  

Elevated Total Cholesterol

In a study of 100 patients at the Warsaw Institute of Hematology, GHB was shown to lower cholesterol levels.


Poor Memory

An IND (Investigational New Drug Application) has been filed with the FDA for GHB’s proposed action on improving poor memory.


Attention Deficit Disorder (ADD / ADHD)

GHB has been report to help decrease hyperactivity and learning disabilities in some children.



GHB has been reported to reduce schizophrenia symptoms, but also must not be used with some psychotropic drugs, such as Valium, Thorazine, Dilantin and Phenobarbital.



GHB’s efficacy for treating anxiety has been positively demonstrated in tests involving schizophrenic subjects (Laborit, 1964). Its sedative properties have earned it a role as a psychotherapeutic adjunct (Vickers, 1969). It has also been used to assist the process of “abreaction,” or the release (usually through verbalization) of repressed emotion (Vickers, 1969). Unlike other “anxiolytic” (or anti-anxiety) drugs, GHB’s effect is non-toxic. Furthermore, GHB’s reduction of inhibitions, its tendency to encourage verbalization, and the typical lack of fear during the GHB experience would seem to provide an ideal context for the verbal exploration of difficult emotional territory during therapy.



GHB has been called “almost an ideal sleep inducing substance” (Smart Drugs II, p. 245). Small doses produce relaxation, tranquility and drowsiness which make it extremely easy to fall asleep naturally. Higher doses increase the drowsiness effect and decrease the time it takes to fall asleep. A sufficiently large dose of GHB will induce sudden sleep within five to ten minutes (Laborit, 1964). Many other hypnotics interfere with various stages of the sleep cycle thus preventing the body from achieving a complete and balanced session of rest and recuperation. The most remarkable facet of GHB-induced sleep is its physiological resemblance to normal sleep. For instance, GHB sleep is characterized by increased levels of carbon dioxide in the arteries, as in normal sleep (Vickers, 1969). During normal and GHB sleep, the CNS continues to be responsive to “noxious stimuli” (pain and other irritations), a factor which sets limits on GHB’s uses in anesthesia (Vickers, 1969). GHB facilitates both REM (rapid eye movement) sleep, and “slow wave” (non-REM) sleep, the stage of sleep featuring increased release of growth hormone (Laborit, 1972). And unlike the unconsciousness induced by other anesthetics, that triggered by GHB does not feature a systemic decrease in oxygen consumption (Laborit, 1964).

The primary disadvantage to GHB’s use as a sleep aid is it’s short term influence – about three hours. During GHB’s influence, sleep is deeper and more restful, but after the GHB has worn off, people have a tendency to wake up. The higher the dose, the greater is this tendency. Some have called this pattern the “dawn effect” and have speculated that it is related to the release of stored dopamine. Some people minimize this effect by taking minimal doses of GHB. Others take advantage of this effect by getting a couple of hours of work done in the middle of the night. Still others choose to take a second dose of GHB to sleep for another three hours.

It should be noted that not everyone can be put to sleep by GHB. We have spoken to three men who have never achieved sleep even with the doses normally used for such purposes. In addition, Takahara (1977) reported that one of the six men in the growth hormone study cited above remained conscious even though he had received of GHB intravenously, a dosage which rendered the rest of the participants unconscious.



Several independent investigators have reported beneficial effects in narcolepsy with GHB but only 2 double-blind studies have been published (Scrima et al, 1989 and 1990; Lammers et al., 1993). Based on these two reports, there is little doubt that the drug is helpful to narcoleptic patients. Several other independent investigators have confirmed the findings. The most consistent and least controversial effects are improved cataplexy and improved nocturnal sleep disruption with GHB treatment (Scrima et al., 1990; Broughton andMamelak, 1980: Bedard et al., 1990). Further investigations would be needed to confirm a possible beneficial effect for daytime sleepiness. Importantly, GHB anti-cataplectic effects are clearly mediated by a different mode of action when compared to those produced by antidepressant compounds. As such, patients who do not tolerate classical antidepressant treatment because of side effects, tolerance or contraindications would not have any other choice if GHB were not available to them. Medical use in the treatment of narcolepsy is usually 50mg/Kg per day.

A form of gamma hydroxybutyrate (GHB), marketed under Xyrem, was approved for treatment of narcolepsy. GHB deepens sleep and has been shown to prevent many of the daytime problems associated with narcolepsy.


Leg Cramps At Night

An IND (Investigational New Drug Application) has been filed with the FDA for GHB’s proposed action on reducing nocturnal myoclonus (painful leg cramps at night).

Nervous System  

Tardive Dyskinesia

GHB has been reported to help control tardive dyskinesia symptoms.



Possible Pregnancy-Related Issues

GHB induces “remarkable hypotonia” (muscle relaxation) (Vickers, 1969). It is now gaining popularity in France and Italy as an aid to childbirth. GHB causes “spectacular action on the dilation of the cervix,” decreased anxiety, greater intensity and frequency of uterine contractions, increased sensitivity to oxytocic drugs (used to induce contractions), preservation of reflexes, a lack of respiratory depression in the fetus, and protection against fetal cardiac anoxia (especially in cases where the umbilical cord wraps around the fetus’ neck) (Vickers, 1969; Laborit, 1964).



May do some good
Likely to help
Highly recommended
Reasonably likely to cause problems



Chemicals in the brain that aid in the transmission of nerve impulses. Various Neurotransmitters are responsible for different functions including controlling mood and muscle movement and inhibiting or causing the sensation of pain.


A cause of daytime sleepiness due to an inherited disorder of the control of dreaming sleep. It should be differentiated from sleep apnea, periodic leg movements and other rarer causes of daytime sleepiness.


Usually Chronic illness: Illness extending over a long period of time.


Symptoms resulting from an inclination to vomit.


Excessively rapid heart rate.


High blood pressure. Hypertension increases the risk of heart attack, stroke, and kidney failure because it adds to the workload of the heart, causing it to enlarge and, over time, to weaken; in addition, it may damage the walls of the arteries.


A false or distorted perception of objects or events, including sensations of sight, sound, taste, smell or touch, typically accompanied by a powerful belief in their reality.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.